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Abstract— Recently, [1] suggested to derive tracking con-
trollers for mechanical systems using a generalization of Gauss’
principle of least constraint. This method allows us to reformu-
late control problems as a special class of optimal control. We
take this line of reasoning one step further and demonstrate
that well-known and also several novel nonlinear robot control
laws can be derived from this generic methodology. We show
experimental verifications on a Sarcos Master Arm robot for
some of the the derived controllers. We believe that the suggested
approach offers a promising unification and simplification of
nonlinear control law design for robots obeying rigid body
dynamics equations, both with or without external constraints,
with over-actuation or underactuation, as well as open-chain
and closed-chain kinematics.

Index Terms— Non-linear control, robot control, tracking
control.

I. INTRODUCTION

Despite the progress in robotics over the last decades,
only a few general building principles for designing robot
controllers have been obtained. To date, robot controllers
are often derived from insights such as the reduction of the
controlled system onto a linear system by linearization or
by inversion of the dynamics of the robot [2], [3]. While
this approach is viable for many problems, it is in a sense
limiting because it ignores potentially useful properties of
the inherent nonlinearities. Only few statements can be made
about the quality of such controllers underlying cost functions
which sometimes cannot even be obtained. General optimal
control techniques on the other hand are often not applicable
as a closed-form solution usually does not exist and numerical
solutions for high-dimensional systems are often prohibitively
expensive in terms of computations due to the ‘Curse of
Dimensionality’ [4], [5].

Recently, a novel way of thinking about tracking control
of mechanical systems was suggested in [1] inspired by
results from analytical dynamics with constrained motion.
The major insight in [1] is that tracking control can be
reformulated in terms of constraints, which in turn allows
the application of a generalization of Gauss’ principle of
least constraint! [6] in order to derive a controller. As it
is outlined already in [1], this insight leads to a specialized

!Gauss® principle of least constraint [6] is a general axiom on the
mechanics of constrained motions. It states that if a mechanical system is
constrained by another mechanical structure the resulting acceleration X of
the system will be such that it minimizes (¥ —M~1F)TM~1 (%X —M~1F)
while fulfilling the constraint.

optimal control framework for controlled mechanical systems.
While it is not applicable to non-mechanical control problems
with arbitrary cost functions, it yields an important class of
optimal controllers, i.e., the class where the problem requires
task achievement under minimal squared motor commands
with respect to a specified metric. In this paper, we develop
this line of thinking a step further and show that it can be
used as a general way of solving robotic control problems
which unifies many approaches to robot control found in
the literature to date. We can demonstrate stability of the
controller in task space if the system can be modeled with
sufficient precision and the chosen metric is appropriate. For
assuring stability in the joint space further considerations may
apply. To demonstrate the feasibility of our framework, we
evaluate a few derived controllers on a robot arm with a
simple end-effector tracking task.

This paper is organized as follows: firstly, a novel optimal
control framework based on [1] is presented and analyzed.
Secondly, we discuss different robot control problems in this
framework including joint and task space tracking, force and
hybrid control. We show how both established and novel
controllers can be derived in a unified way. Finally, we
evaluate some of these controllers on a Sarcos Master robot
arm.

II. A NOVEL METHODOLOGY FOR THE CONTROL OF
ROBOTIC SYSTEMS

A variety of robot control problems can be motivated by
the desire to achieve a task perfectly while minimizing the
squared motor commands. In this section, we will show how
the robot dynamics and the control problem can be brought
into a general form which will then allow us to compute
the optimal control with respect to a desired metric. We will
augment this framework so that we can assure stability both
in the joint space of the robot as well as in the task space of
the problem.

A. Formulating Robot Control Problems

In order to formulate our framework, we will introduce the
specifics of the assumed underlying robot model and show
how a task can be specified.

Robot Model: We assume the well-known rigid-body
dynamics model of manipulator robot arms with n degrees
of freedom given by the equation

u=M(q)4 + C(q,q) + G(q), (1)



where u € R" is the vector of motor commands (i.e., torques
or forces), q,q,q € R" are the vectors of joint position,
velocities and acceleration, respectively, M(q) € R"*™ is
the mass or inertia matrix, C(q, q) € R"™ denotes centrifugal
and Coriolis forces, and G(q) € R"™ denotes gravity [2],
[3]. At many points we will write the dynamics equations by
M(q)q = u(qa q) + F(qv q) where F(qv q) = _C(qv Q) -
G(q) as specified in [1], [6]. We assume that an accurate
model of our robot system is available.

Task Description: A task for the robot is assumed to be
described in the form of a constraint description, i.e., it is
given by a function

h(q,q,t) = 0. )

where h € R where the dimensionality is arbitrary. For
example, if the robot is supposed to follow a desired trajectory
Ques(t) € R™, we could formulate it by h(q,q,t) = q —
Qdes(t) = 0; this case is analyzed in detail in Section III-
A. We consider only tasks wherein equation (2) can be
reformulated as

A(q,q,t)4 = b(q,q,t), (3)

which can be achieved for most tasks by differentiation
of equation (2) with respect to time, assuming that h is
sufficiently smooth. For example, our previous task, upon
differentiation, becomes § = {ges(t) so that A = T and
b = {ges(t). An advantage of this task formulation is that
non-holomonic constraints can be treated in the same general
way.

In Section III, we will always give the task description
first in the general form in Equation (2), and then derive
the resulting controller using the form which is the linear
in accelerations, given in Equation (3).

B. Optimal Control Framework

Let us assume that we are given a robot model and a
constraint description of the task as described in the previous
section. In this case, we can describe the desired properties
of the framework as follows: first, the task has to be achieved
perfectly, i.e., h(q,q,t) = 0, or equivalently, A§ = b, holds
at all times. Second, we intend to minimize the control force
with respect to some given metric, i.e., J(t) = uTN(¢)u, at
each instant of time. The solution to this can be derived from
a generalization of Gauss’ principle as originally suggested
in [1]. We formalize this here in the following theorem.

Theorem 1: The class of controllers which minimizes

J(t) = u'N(t)u, 4)

for a mechanical system M(q)q = u(q,q) + F(q,q) while
fulfilling the task constraint

Agq=bh, )

is given by

u=N"1/2 (AM*N*W)+ (b— AM™'F), (6)

where DY denotes the pseudo-inverse for a general matrix
D, and D'/2 denotes the symmetric, positive definite matrix
for which DY/?D'/? = D.

Proof: By defining z = N'/2u = N'/2(Mg — F), we
obtain § = M~'N~1/2(z4N'/2F). Since the task constraint
Aq = b has to be fulfilled, we obtain

AM ™ 'N~2z =b - AM'F. (7

The vector z which minimizes J(t) = z’z while fulfill-
ing Equation (7), is given by z = (AM 'N~%/2)*(b —
AM_lF), and as the motor command is given by u =
N~—1/2z, the theorem holds. ]

The choice of the metric N plays a central role, because it
determines the type of solution. Often, we require a solution
which has a kinematic interpretation; such a solution is
usually given by a metric like N = M ~2. In other cases, the
control force u may be required to comply with the principle
of virtual displacements by d’Alembert for which the metric
N = M~! is more appropriate. In Section III, we will see
how the choice of N results in several different controllers.

Note that this framework has been suggested in general in
[1], [6], and the special case with a metric N = M~! has
been presented in [7] with respect to robot control.

C. Stability Analysis

Up to this point, this framework has been introduced in an
idealized fashion neglecting the possibility of imperfect initial
conditions and measurement noise. Therefore, we modify this
framework slightly and show how we can ensure stability.
This modification will be introduced in Section II-C.1. Fur-
thermore, we realize that the case of underconstrained tasks,
i.e., tasks where some degrees of freedom of the robot are
redundant for the given task, can cause undesired properties
or even instability in joint-space; we will treat this problem
in Section II-C.2.

1) Stability in Task Space : Up to this point, we have
assumed that we always have perfect initial conditions and
that we know the robot model perfectly. However, we have to
compensate for the fact that we might not be sitting perfectly
on the trajectory from the start or that we might get disturbed
out of this trajectory. [1] suggested that this can be achieved
by requiring that the desired task is an attractor, e.g., it could
be prescribed as a dynamical system in the form

h(q7 (.*17 t) = fh(h7 t)) (8)
where h = 0 is a globally asymptotically stable equilibrium
point — or a locally asymptotically stable equilibrium point
with a sufficiently large region of attraction. Note that h can
be a function of robot variables (as in end-effector trajectory
control in Section III-B) but often it suffices to choose it to
be state vector (for example for joint-space trajectory control
as in Section III-A). In the case of holomonic tasks (such as
tracking control for a robot arm), i.e. h;(q,t) = 0, i = 1,

2,..., k we can make use of a particularly simple form as
suggested in [1] and turn this task into an attractor
hz + 51]11 + Kk;h =0, 9



where §; and k; are chosen appropriately. We will make use
of this ‘trick’ in order to derive several algorithms. Obviously,
different attractors with more desirable convergence proper-
ties (and/or larger basins of attraction) can be obtained by
choosing f}, appropriately.

If we have a task-space stabilization as discussed in the
paragraph above, we can assure that the control law is stable
in task space at least in a region near about the desired
trajectory. We show this in the following theorem.

Theorem 2: If we can assure the attractor property of the
task h(q,q,t) = 0, or equivalently, A =b, and if our
robot model is accurate, it is straightforward to show that
the controller is stable in task space.

Proof: When combining the robot dynamics equation
with the controller, and after reordering the terms, we obtain

AM ™! (Mg - F) = (AM*N*W)+ (b— AM™'F).

(10)
If we now premultiply the equation with D = AM ™ 'N~1/2,
and noting that DDTD = D, we obtain A§ = GG'b = b.
The equality follows because the original trajectory defined
by Ag = b yields a consistent set of equations. If this is an
attractor, we will have perfect task achievement asymptoti-
cally. [ ]

An analysis of the stability properties of the derived con-
trollers when an imperfect robot model is given will be part
of future work.

2) Stability in Joint Space : While the stability in task
space is fairly well-understood, it is not immediately clear
whether the control law is stable in joint-space. It is fairly
straightforward to create a counter-example. Example 1, il-
lustrates a situation where a redundant robot arm is stable in
task-space while unstable in joint-space.

Example 1: Let us assume the simplest possible robot, a
prismatic robot with two horizontal, parallel links. The mass
matrix of this robot is a constant given by M = diag(m1,0)+
ms1l where 1 denotes a matrix having only ones as entries,
and the additional forces are F' = 0. Let us assume the task is
to move the end-effector x = ¢; + g2 along a desired position
Tdes, 1.€., the task can be specified by A = [1,1], and b =
Fdes +0(Zdes — &) + k(2 aes — ) after double differentiation and
task stabilization. While this obviously is stable in task-space,
the initial condition ¢1(tg) = Taes(to) — g2(to) would result
into both ¢;(¢)’s diverging into opposite directions. The reason
for this is obvious: the effort of stabilizing in joint space is
not task relevant — any solution stabilizing this problem in
joint-space would increase the cost.

From this example, we see that the general framework does
not always suffice but that it has to be modified so that we can
incorporate a minimal control which in practice stabilizes the
robot without affecting the task achievement. One possibility
to stabilize the robot in joint-space is by having a joint-space
motor command u; as an additional component of the the
motor command u, i.e.,

u=u;+u(u), (11)

where the first component u; denotes an arbitrary joint-
space motor command for stabilization, while the second
component uy (uy) denotes the task-space motor command
generated with the previously explained equations. The task-
space component depends on the joint-space component as
it has to compensate for it. We can show that the fulfillment
of the task Aq = b by the controller is not affected by the
choice of the joint-space control law u;.

Theorem 3: For any chosen joint-stabilizing control law
u; = f(q), the resulting task space control law us (u;)
ensures that the joint-stabilizing control law acts in the null-
space of the task.

Proof: When determining u2, we consider u; to be part
of our forces, i.e., we have FF = F + u;. We obtain uy =
N-1/2 (AMlefl/Q)+ (b - AM*I].F") using Theorem 1.
By reordering the complete control law u = u; + us (uy),
we obtain

u=u; + N2 (AM_lN*1/2)+ (b—AM™(F +uy)),
— N2 (Al\/rlN‘”Q)+ (b— AM™'F)
+(I-N"2 (A1\/1—1N—1/2)+ AM Ny,
N2 (AM—lN—1/2)+(b—AM_1F) (12)

Jr
SN2 (AM—IN—l/Q) (AM~'N~V/2)|N/2q,,

The task space is defined by N—1/2 (AM_lN’l/Q)Jr, and
that the matrix N~1/2[T— (AM~'N-1/2)" (AM~'N-1/2)]
makes sure that the joint-space control law and the task space
control law are N-orthogonal. ]

Despite that the task is still achieved, the optimal control
problem is affected by the restructuring of our control law.
While we originally minimized J(t) = u”N(¢)u, we now
have a modified cost function

Jt) =ulNHuy = (u—u)" N(t) (u—wy), (13)

which is equivalent to stating that the complete control law
u should be as close to the joint-space control law u; as
possible under task achievement.

This reformulation can have significant advantages if used
appropriately. For example, a variety of applications — such
as using the robot as a haptic interface — a compensation
of the robot’s gravitational, coriolis and centrifugal forces in
joint space can be useful. Such a compensation can only be
derived when making use of the modified control law. In this
case, we set u; = —F = C + G, which allows us to obtain

+
up = N~1/2 (AM*IN*/Q) b, (14)

and we would
C + G +

which does not contain these forces,
have a complete control law of u =
N-1/2 (AM™IN-1/2)"p,



III. ROBOT CONTROL LAWS

The previously described framework offers a variety of
applications in robotics — we will only be able to give the
most important ones in this paper. Most of these controllers
which we will derive are known from the literature but often
from very different building principles. In this section, we
show how a vast variety of control laws for different situations
can be derived in a simple and straightforward way by using
the unifying framework that has been developed hereto. We
derive control laws for joint-space trajectory control for both
fully actuated and overactuated “muscle-like” robot systems
from our framework. We also discuss task-space tracking
control systems, and show that most well-known inverse
kinematics controllers are applications of the same principle.
Additionally, we will discuss how the control of constrained
manipulators through impedance and hybrid control can be
easily handled within our framework.

A. Joint-Space Trajectory Control

The first control problem we attempt to tackle is joint-
space trajectory control. We consider two different situations:
(a) We control a fully actuated robot arm in joint-space, and
(b) we control an overactuated arm. The case (b) could, for
example, have agonist-antagonist muscles as actuators similar
to a human arm?.

1) Fully Actuated Robot : The first case which we consider
is the one of a robot arm which is actuated at every degree of
freedom. We have the trajectory as constraint with h(q,?) =
q(t) — qq(t) = 0. We turn this constraint into an attractor
constraint using the idea in Section II-C.1, yielding

(d—da) +Kp(d—da) +Kp(q—qq) =0, (15
where Kp = (6; ;) are positive-definite damping gains, and
Kp = (ki;) are positive-definite proportional gains. We can
bring this into the form A(q, ) = b(q,q) with

A=1, (16)
b=8§s+Kp(da—4) —Kp(aa—q). (17)
In this case, we can use Theorem 1 and derive the controller.

Using (M~!IN~1/2)* = N''/2M as both matrices are of full
rank, we obtain

u=u + N1/ (AM*N*U?)+ (b— AM }(F +uy)),

-1
=MY2 (M) (da+Kp (a0 — &)
+Kp(aa—q) -M' (-C-G)),
=M(G4s +Kp (44 — 4) + Kp (qs — q)) (18)
+C+G. (19)
Note that all joint-space motor commands or virtual forces
u; always disappear from the control law and that the chosen
metric IN is not relevant — the derived solution is unique and

general. It turns out that this a well-known control law, i.e.,
the Inverse Dynamics Control Law [2], [3].

2An open topic of interest is to handle underactuated robot arm control.
This will be part of future work.

2) Overactuated Robots : Overactuated robot arms as they
can be found in biological systems are inheritently different
from previously discussed robot arms. For instance, these
arms are actuated by several linear actuators, e.g., muscles
that often act on the system in form of opposing pairs. These
interactions of the opposing pairs of muscles can be modeled
using the dynamics equations of

Du = M(q)4 + C(q,q) + G(q), (20)

where D depends on our type of muscle. In the simplest
model for a two degrees of freedom robot it could be given
by

-+ 0 0

D=1y o -1 w|

(2D
We can bring this equation into the standard form by mul-
tiplying it with D™, which results in a modified system
where M(q) = D*M(q), and F(q,4) = -D*C(q,q) —
D*G(q). If we have expressed the trajectory like in previous
examples, and we obtain the following controller

u = M2 (A1\71_1/2)+ (b—adt 'F), (22)
=D*M(§e+Kp (@ — @) —Kp(aa—aq)) (23)
+D"(C+G). (24)

While immidiately intuitive, it is somehow surprising that
this particular controller should fall out of the presented
framework. Due to a lack of hardware and realistic simulators,
we cannot evaluate this approach within the scope of this

paper.
B. End-effector Trajectory Control

While joint-space control of a trajectory q(t) is straightfor-
ward and the presented methodology appears to simply repeat
earlier results from the literature, the same cannot be said
about end-effector control where the position x(¢) of the end-
effector is moved along some given trajectory. This problem
is generically more difficult as the choice of the metric N
determines the type of the solution and as the joint-space of
the robot often has redundant degrees of freedom resulting in
problems as already presented in Example 1. In the following
context, we will show how to derive different approaches to
end-effector control from the presented framework; this yields
both established as well as novel control laws.

The task description is given by the end-effector trajectory
as constraint with h(q, t) = f(q(t)) —x4(t) = x(t) —x4(t) =
0, where x = f(q) denotes the forward kinematics. We turn
this constraint into an attractor constraint using the idea in
Section II-C.1, yielding

(i—id)-i-KD ()'{—)'(d)-i-Kp (X—Xd)zo, (25)

where Kp = (d; ;) are positive-definite damping gains, and
Kp = (k;;) are positive-definite proportional gains. We make
use of the differential forward kinematics, i.e.,

x =J(q)q, (26)



% =J(q)d +J(q)q. 27)

These allow us to formulate the problem in form of con-
straints, i.e., we intend to fulfill

%4+ Kp (k¢ — %)+ Kp (xg —x) =Jg +Jq,  (28)

and we can bring this into the form A(q, q)§ = b(q, q) with

A(q,q) =J, (29)
b(q,d) = %4 + Kp (k¢ — %) + Kp (xq — x) — J&. (30)

These equations determine our task constraints. As long as
the robot is not redundant J is invertible and similar to joint-
space control, we will have one unique control law. However,
when J is not invertible the resulting controller depends on
the chosen metric and joint-space control law.

1) Separation of Kinematics and Dynamics Control: The
choice of the metric IN determines the type of the task. A
metric of particular importance is N = M~2 as this metric
allows the decoupling of kinematics and dynamics control as
we will see in this section. Using this metric in Theorem 1,
we obtain a control law

u=u + N2 (AM—lN*W)+ (b— AM '(F +uy)),

=MJI* (%4 + Kp (k¢ — %) + Kp (xq — x) — Jq)
+MI-JTIH)M tu; - MITIM'F.

If we choose the joint-space control law u; = uy — F, we
obtain the control law

u=MJI"(%4+Kp (%s — %) + Kp (x4 — x) —Jq) (1)
+MI-JTIH)M tuy + C +G.

This control law is the combination of a resolved-
acceleration kinematic controller [2], [8] with a model-
based controller and an additional null-space term. Similar
controllers have been introduced in [9]-[12]. The null-space
term can be eliminated by setting uy = 0; however, this
can result in instabilities if there are redundant degrees of
freedom. This controller will be evaluated in Section IV.

2) Dynamically Consistent Decoupling: As noted earlier,
another important metric is N = M ! as it is consistent with
the principle of d’Alembert, i.e., it is dynamically consistent
and therefore the resulting control force can be re-interpreted
as mechanical structures (e.g., springs and dampers) attached
to the end-effector. Again, we apply Theorem 1, and by
defining F = F + u; obtain the control law

u=u +N"1/2 (A1\/1—1N—1/2)+ (b - AM_lf‘) :
—u; + M2 (JM’l/Q)T (M~37) 7 (b—IMF),
= + 37 (AMIT) 7 (b - IMTF)
=37 (IMIT) " (kg + Kp (kg — %)
+Kp (x4 —x) = J(@)q +IM ' (C+ Q)

+MI-M1IT (M) My,

It turns out that this is another well-known control law suggest
in [13] with an additional null-space term. This control-
law is used in [1] and is especially interesting as it has
a clear physical interpretation [1], [6], [7]: the metric used
is consistent with principle of virtual work of d’Alembert.
Similarly as before we can compensate for coriolis, cen-
trifugal and gravitational forces in joint-space, i.e., setting
u; = C+ G + uy. This yields a control law of

u=JT (JM_lJT)71 (%4 + Kp (%4 — %)
+Kp (x4 —x) —J(q)q) + C+ G
+MI - M 137 (IMIT) T I)M .

(32)

The compensation of the forces in joint-space is often de-
sirable for this metric in order to have full control over the
resolution of the redundancy as the gravity compensation in
task space often results into strange postures.

3) Further Metrics: Using the identity matrix as metric,
i.e., N = I, punishes the squared motor command without
reweighting. This metric could be of interest as it distributes
the “load” created by the task evenly on the actuators. This
metric results in a control law

u=(IM " (ks +Kp (ks — %)
+Kp (x4 — %) = J(q)q+IM ™' (C+ G))
+(@T— (@MY IM Y.

(33)

To our knowledge, this controller has not been presented in
the literature.

Another, fairly practical idea would be to weight the
different joints depending on the maximal torques Timax,i
of each joint; this would result in a metric N =
diag(Tr;;x,h T 77—&;)(,71)'

C. Controlling Constrained Manipulators: Impedance & Hy-
brid Control

Contact with outside objects fundamentally alters the
robot’s dynamics, i.e., a generalized contact force F¢o € RS
acting on the end-effector changes the dynamics of the robot
to

u=M(q)4+C(q,q) +G(q) +ITFo. (34

In this case, the interaction between the robot and the envi-
ronment has to be controlled. This kind of control can both
be used to make the interaction with the environment safe
(e.g., in a manipulation task) as well as to use the robot to
simulate a behavior (e.g., in a haptic display task). We will
discuss impedance control and hybrid control as examples of
the application of the proposed framework; however, further
control ideas such as parallel control can be treated in this
framework, too.

1) Impedance Control : In impedance control, we want the
robot to simulate the behavior of a mechanical system such
as

Md(id — X) + Dd().(d — X) + Pd(Xd — X) =F¢c, (35



where M, € RY%6 denotes the mass matrix of the desired
system, Fo € RS denotes the measured external forces
exerted onto the system, Dy € RS denotes the desired
damping, and P, € R® denotes the gains towards the desired
position. Using Equation (27) from Section III-B, we see that
this can simply be brought in the standard form for tasks by

MyJ4 =F¢c — MgXq — Dy(%xq4 — Jq) (36)
—Py(xq — f(q)) — MaJgq,

after dropping all indices. From this we can infer the task
description given by

A=M,J, 37)
b=Fc —Mgx; —Dy(Jq— %Xq) (38)
—Py(f(q) — xa) — MaJq.

A major question in this context is the choice of the correct
joint-space control law ui(q,q), and the right metric to
achieve such tasks.

a) Separation of both Systems through Kinematics:
Similar as in end-effector control, a practical metric is N =
M2 as this basically separates both dynamic systems into
two separate ones as it will become apparent in this section.
For simplicity, we make use of the joint-space control law
u; = C+G + ug similar as before. This results in the control
law

Jr
u=w + N2 (AMTINTY2) (b - AMTU(F + ),
=M (MyJ)" (Fo — My&q — Da(Jd4 — %) (39)
—Py(f(a) — xa) —MgJ§) + C+ G
+(IT—M (MyJ)" MgIM ™ uy.

-1
As (MgD)" = IJTM,; (MgI3I"My = JtM;"' since
My is invertible, we can simplify this control law into

u=MI"M; (Foc — Mgkq — Da(Jq—%q4)  (40)
—Py(f(q) —x4)) - MItIg+ C+G
+M(I—JtI)M u.

We note that %4 = M (Fo — MgXq — Da(J§ — %4) —
Pu(f(q) —xq)) is a desired acceleration in task-space. This
clarifies the previous remark: we have a first system which
describes the interaction with the environment — and addition-
ally we use a second, inverse-model type controller to execute
the desired accelerations with our robot arm.

b) Dynamically Consistent Combination: Similar as in
end-effector control, a practical metric is N = M~! which
combines both dynamic systems into a big one employing
Gauss’ principle. For simplicity, we make use of the joint-
space control law u; = C + G + ug similar as before. This
results into the control law

u=u + N2 (A1\/1—1N—1/2)+ (b— AM\(F + uy)),
—u + 37 (M) (b - AMTU(F + ),

+
— M/2 (MdJM_l/Q) (Fo — Da(Jq — %) 1)

— Pa(f(a) — x4) - M4J§) + C+ G
+ (I =M (MyJ)t MaIM 1 ug.

As (MIM™V/2)* = M-1/23T (IM~'37) "' M, " since
M, is invertible, we can simplify this control law into

u=J37 (IMIT) 7 M (Fe - Da(Ja - %4)  (42)
—Py(f(q) —xq4)) ~-MI*J§+ C+G
+ (1= MITIM Hu,.

We note that the main difference between the two control law
is the location of the matrix M.

2) Hybrid Control: In hybrid control, we intend to control
the desired position of the end-effector x; and the desired
contact force exerted by the end-effector F;. Modern, com-
mon hybrid control approaches are essentially similar to our
introduced framework [3]. Both are inspired by constrained
motion and use this insight in order to achieve the desired
task. In traditional hybrid control, a natural or artificial,
idealized holomonic constraint ¢(q,t) = 0 acts on our
manipulator, and subsequently the direction of the forces is
determined through the virtual work principle of d’ Alembert.
We can make significant contributions here as our framework
is a generalization of the Gauss’ principle that allows us to
handle even non-holomic constraints ¢(q,q,¢) = 0 as long
as they are given in the form

Ay(q,q)4 = by(q,q). (43)

Ay, by depend on the type of the constraint, e.g., for
scleronomic, holomonic constraints fi)(q) = 0, we would have
A¢(q, q) = J¢ and b¢(q, q) = —J¢('1 with J¢ = 8¢/8q as
in [3]. Additionally, we intend to exert the contact force F
in the task; this can be achieved if we choose the joint-space
control law

u; =C+ G+ J)Fq. (44)

From the previous discussion, this constraint is achieved by
the control law

+
u=u, + N2 (A¢M*1N*1/2) (by — ApM ™ (F + 1)),
(45)

+
—C+G+N12 (A¢M—1N*1/2) by (46)
+
FNTU2(1 - (AM_lN‘l/Q) AM'N"V2)NV2ITR,,

Note that the exerted forces act in the null-space of the
achieved; therefore both the constraint, and therefore the force
can be set independently.

IV. EVALUATIONS

The main contribution of this paper is the unifying method-
ology for deriving robot controllers. In order to demonstrate
the framework’s feasibility for providing implementable con-
trollers for real robots, we have chosen a few of the controllers



(a) Simulated Robot Arm (b) SARCOS Master Arm

Fig. 1. Setups in which we evaluate the designed controllers: (a) a physical
simulation of the SARCOS Master Arm, (b), the robot arm.

derived here and evaluate them with a simple tracking task.
In future work, we plan to evaluate all controllers presented
in this paper with more complex tasks.

The joint-space trajectory controller derived in this paper is
already well established in the literature, and such that further
evaluation is not necessary. Of more interest to us are the end-
effector controllers, since they introduce added complexity,
particularly the problem of redundancy resolution. Due to
a lack of force sensors on our experimental platform, we
are unable to implement the impedance or hybrid controllers,
but plan to do so in our future work. For this paper, we
evaluate the three end-effector controllers from Section III-
B: (i) the resolved-acceleration kinematic controller (with
metric N = M~ ?) in Equation (31), (ii) Khatib’s operational
space control law (N = M1 in Equation (32), and (iii) the
identity metric control law (N = I) in Equation (33).

As an experimental platform, we use the Sarcos Dextrous
Master Arm, a hydraulic manipulator with an anthropomor-
phic design shown in Figure 1 (b). Its seven degrees of
freedom mimic the major degrees of freedom of the human
arm, i.e., the three in the shoulder, one in the elbow and in
the wrist. The robot’s end-effector tracks a planar “figure-
eight (8)” pattern in task space at two different speeds. In
order to stabilize the null-space trajectories, we choose a PD
control in joint space which pulls the robot towards a fixed
rest posture, Qrest; this control law is given by

ug = M (Kpo (qrest —aq) — Kpoq) .

Additionally we apply gravity, centrifugal and Coriolis force
compensation, such that u; = ug+ C + G. For consistency,
all three controllers are assigned the same gains both for the
task and joint space stabilization.

Figure 2 shows the end-point trajectories of the three
controllers in a slow pattern of 8 seconds per cycle “figure-
eight (8)”. Figure 3 shows a faster pace of 4 seconds per
cycle. All three controllers have similar end-point trajectories
and result in fairly accurate task achievement. Each one has
an offset from the desired (thin black line), primarily due to
the imperfect dynamics model of the robot. The root mean
squared errors (RMS) between the actual and the desired
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Fig. 2. This figure shows the three end-effector trajectory controllers
tracking a “figure eight (8)” pattern at 8 seconds per cycle. On the left
is the x-z plane with the y-z plane on the right. All units are in meters.
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Fig. 3. The same three controllers tracking the same “figure eight (8)”
pattern at a faster pace of 4 seconds per cycle. The labels and units remain
the same as in Figure 2.

trajectory in task-space for each of the controllers are shown
in the Table I.

As expected, the performance of the three controllers is
very similar in task space. However, the resolved-acceleration
kinematic controller (N = M™2) appears to have a slight
advantage here. The reason is most likely due to errors in
the dynamics model, since the effect of these is amplified by
the inversion of the mass matrix in the control laws given
in Equations (32, 33) while the decoupling of the dynamics
and kinematics provided by the controller in Equation (31)
can be favorable as the effect of the modeling error is not
increased. Clearly, more accurate model parameters of the
manipulator’s rigid body dynamics would result in a reduction
of the gap between these control laws as we have confirmed in



Fig. 4. Joint space trajectories for the four major degrees of freedom,
i.e., shoulder flexion-extension (SFE), shoulder adduction-abduction (SAA),
humeral rotation (HR) and elbow flexion-extension (EBFE), are shown here.
Joint angle units are in radians. The labels are identical to the ones in Figure
2.

simulations. Figure 4 shows how the joint space trajectories
appear for the fast cycle. Although end-point trajectories
were very similar, joint space trajectories differ significantly
due to the different optimization criteria of each control law.

V. CONCLUSION

In this paper we have presented a novel optimal control
framework which allows the development of a unified ap-
proach for deriving robot control laws. We have shown in
detail how we can make use of both the robot model and a
task description in order to create the control law which is
optimal with respect to the squared motor command under
a metric while perfectly fulfilling the task at each instant of
time. We have discussed how to realize stability both in task
as well as in joint-space for this framework.

Building on that foundation, we demonstrated how a variety
of control laws—which on first inspection appear rather unre-
lated to one another—can be derived using this straightforward
framework. The covered types of tasks include joint-space
trajectory control for both fully actuated and overactuated
robots, end-effector trajectory control, impedance and hybrid
control.

The implemention of three of the end-effector trajectory
control laws resulting from our unified framework on a real-

TABLE 1
THIS TABLE SHOWS THE ROOT MEAN SQUARED ERROR RESULTS OF THE
TRACKING ACHIEVED BY THE DIFFERENT CONTROL LAWS.

[ Metric | Slow RMS error [m] | Fast RMS error [m] ||
N=M"2 0.0122 0.0130
N=M1T 0.0126 0.0136

N=1I 0.0130 0.0140

world Sarcos Master Arm robot has been carried out. As
expected, the behavior in task space is very similar for all
three control laws; yet, they result in very different joint-
space behaviors due to the different cost functions resulting
from the different metrics of each control law.

The major contribution of this paper is the unified frame-
work that we have developed. It allows a derivation of a
variety of previously known controllers, and promises the
easy development of a host of novel ones. The particular
controllers reported in this paper were selected primarly for
illustarting the applicability of this framework and showing
its strength in unifying different control algorithms using a
common building principle. In future work, we will show
how this framework can yield a variety of new and interesting
control laws for underactuated tasks and robots, for non-
holomonic robots and tasks, and for robots with flexible links
and joints.
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